DPKA-1UR (opt. weight set)

Dalton Pro Clutch Components (optional Teryx flyweight)

Model: 2008-2010 Kawasaki Teryx 750 4x4 Utility Vehicle

Optional Flyweight Set DPKA-1UR (Teryx-69.8g base weight + 3 set screws + 3.6 rivet=77g)

Components:
1 set of Dalton Quick Adjust flyweights/hardware -set screws weight 1.2gram (DPKA-1UR)
2 pkg aluminum rivets (.85gram) (DFRA-Y)
2 pkg hollow steel rivets (2.4gram) (DFRH-Y)
2 pkg Steel rivets (3.6gram) (DFRL-Y)

Tools: Primary clutch puller bolt is required. Kawasaki dealers have them or can order Dalton part # DCP-J.

Description : THIS IS an OPTIONAL set (flyweights only) designed for use with the springs provided in the DUV K750TX clutch kit

Kit is designed specifically to fit the 08-2010 750 Kawasaki Teryx RUV....and more specifically, it is a LIGHTER set of base weights for use on engines that are RACE motors, with very long duration camshafts that require higher rpm to make their peak hp. As you are diving into the world of highly modified engines, etc , you are probably aware that you will need to familiarize yourself with the rpm requirements of YOUR particular application, as well as learn to tune the cvt to achieve that rpm for your application on your own. If you simply have a Teryx with typical bolt on mods,you should be using our regular Teryx clutch kit that comes with FULL instructions for different applications. This kit is for advanced tuning on race motors, and in doing such engines you need to be aware that nobody can "tell" you what to run exactly, you will need to test for optimum performance. Many race engine configurations are different valves, porting, different pipes, and final drive gearing, tires, etc. Following is a list of notes that you should be aware of:

The Teryx RUV is calibrated very different from the factory than the 4x4 atv models. It is a much heavier vehicle than a regular atv, It is often used with two persons on board, and loaded with more weight. This even required different final drive gearing and CVT clutch tuning from the factory .It uses stock flyweights with a much different profile and curve, as well as the flyweight starting position different than found on ATV models. Through field testing, we found that when using any of our typical ATV clutch products (especially flyweights) that were applicable to prairie/Brute Force models we could do simple timed runs, etc. using these and get decent results in simple drags ,but belt heat was higher and not acceptable. We designed new flyweight for this application that is specific to this model that has its own new curvature , position of mass, and our “quick adjust” system . These flyweights were designed to work in conjunction with the new springs that were also developed for this model."This set (DPKA-1UR) is a optional lighter base weight for race applications on modified engines"

The stock secondary spring on the 750 Teryx is different than Prairie/Brute Force models .It is a larger diameter and uses different retaining cups and different load rating dimensions. We developed a new secondary spring that is diverse enough , when used in this kit , to cover many applications. The Dalton Silver secondary spring is most common. If stock secondary spring, or others are used be sure to realize that the total amount of GRAMS necessary will be sometimes irrellevant.
WARNING

Clutch components should only be installed by factory trained mechanics and personnel with a complete knowledge of variable rate belt transmission systems or CVT’s.

This is a performance kit and is intended for the use of experienced adult riders, who are trying to obtain a higher level of performance for racing, etc. This kit should not be installed on any vehicle that will be used by any person of MINOR AGE. Dalton Industries has no control over the use, misuse, or installation of these components and assumes no responsibility for any injury or damage.

INSTALLATION: (dealer recommended)

Important: Always remove the KEY from the ignition before working on clutches. If the electric servo motor is activated for the engine brake system while the cover is removed it will have to be reset by a factory technician.

1) Remove passenger seat, seat bracket, and accessories as necessary to access CVT clutch area. It is tricky the first time, but with finesse the aluminum cover comes off without removing the rear engine mount bracket. Remove the cover bolts to remove the aluminum cover shroud. There should be enough slack in the servo wiring to swing the whole cover assembly out of the way of your work. (use caution, do not pull or damage any wires.)

2)**Take note of **Belt Deflection before** removing the clutches. Belt deflection is a CRITICAL adjustment on this model. Proper belt tension is relative to the start off ratio of the clutches and critical to good belt life. **Belt Deflection** should be within factory specification of 22-26mm (approx 7/8 inch). If the belt is too loose or not in spec (sometimes from factory), your secondary pulley clutch will have to be disassembled to remove shim/shims to adjust before re-installing. Consult factory service manual. (this is a dealer recommended install)

Note: Our testing has shown best results on Kawasaki V-Twin models with the factory belt, and calibration for this kit is associated with that factory belt compound.

3) Remove the center bolt from the primary (motor) clutch. **ATTENTION...this drive clutch center bolt is left hand thread**

After removing center bolt, use the proper puller bolt (Dalton part # DCP-J or Factory Kawasaki puller) to remove the drive clutch from the engine **Important... start the puller bolt in by hand to insure proper threading. Take note of the direction of the belt. It should be installed with the letters on the belt so that you can read them.**

4) With the clutch removed, remove the cover from the primary clutch by removing the 10mm bolts. **NOTE: take note of the alignment marks on the cover itself and the spider for re-installation.** Take note of the metal washer under the primary spring. It must still remain there for use with the supplied new primary spring.

5) Remove stock flyweights.

6) **AFTER** setting up the provided flyweights as desired (READ all pages before continuing) install the new flyweights into the clutch and install chosen primary spring. Set the primary (motor) clutch aside for now and remove the secondary clutch. **7) If you are changing secondary clutch spring, Using a shop press or clutch compression tool, compress the spring retainer cap on the secondary clutch and remove the snap ring and slowly release the retainer cap.**

It is NOW that you would remove shims for adjusting belt deflection if necessary.

Torque specifications: Primary center bolt = 69 ft/lbs.
Primary cover bolts = 113 in/lbs.

Install cover shroud. Be careful to insure wires from servo motor are tucked neatly out of harms way and zip tied, etc as necessary.

Reminder: did you note BELT DEFLECTION? - this is a critical element of calibration
OVERVIEW - and general CVT tuning

There are books written on CVT clutch tuning and some in depth principals of controlling the rate of shift of the belt on belt drive systems. The following is a very general guide to help those unfamiliar with understanding some basic principals of the system.

The cvt system on your atv is a variable rate system. It is a two pulley system that gives different belt ratio as it shifts. As the belt goes up on the primary motor clutch, it also goes down into the driven (or secondary clutch) giving a higher clutch ratio and more speed. Conversely, as the machine comes under load or slows down its speed, it back shifts to a lower ratio so that it will be able to pull away again after slowing or stopping. A system that is properly calibrated for its intended application will UP SHIFT as quick as possible while still maintaining the proper rpm for the engines power curve. If a system is up shifted TOO quickly it lowers the engine rpm to a level below peak hp...if it up shifts too slowly it will rev higher during the shift phase than that rpm where the engine makes best power. This same system should also BACK SHIFT properly. Back shifting properly means maintaining that optimum rpm as best possible, as the vehicle comes under load.

It is VERY important to realize that on most ATV situations, that the “clutch phase “(the time that the belt goes from low ratio to high ratio) is only for a distance of approximately 600 feet at wide open throttle,(and even much less than that on TERYX) or around 45 mph. After which ...the clutch components are open all the way ,and have little effect on the tach rpm...as the belt is already up on the top of the primary clutch. Once the belt is to the top, it is to the top... and the engine starts to build rpm as the belt is out of ratio. Clutch components cannot control rpm after full shift out is achieved. Clutch components change the rate of shift of the belt...once the belt is shifted out,clutch kits can not offer top speed increases.

Different tuning components can control the rate of up shift and back shift of the belt to maintain a desired rpm range. The goal of a cvt system is to keep the belt in the proper ratio at any given speed and load situation. The factory has set up your system to be a decent “all around” calibration, that means it can ride in different terrain, or haul a trailer, or maintain decent emissions, and be a “general” calibration that the factory feels is a suitable compromise in many respects. Many users of ATV’s ,for various reasons, like to change the desired effects and purpose of their machine to a more case specific application, whether it be oversized tires for mud, drag racing, sand applications, pulling competition, high altitude operation where less power is available, different engine(rpm) characteristics from engine modification etc. In different situations like this, performance can be optimized by re-calibrating the shift pattern of the cvt.

An example of a need to change the shift pattern would be adding larger mud tires. When installing larger tires there are a couple of factors that effect the clutching. The larger tires result in taller gearing. With a taller gearing situation, the last thing you would want to do is up shift too fast, as you are already starting off in a higher gear from the tires. Other situation include the state of tune of the engine itself. Different engine kits and camshafts require different shift patterns to develop the required rpm hp peak.
Dalton Quick Adjust Cam Arms -and general tuning info

General tuning info: following are a few general rules of thumb.

Heavier Weights: Quicker up shift and lower rpm during the “clutch phase”.
Depending on the situation, sometimes you can get away with a quicker up shift. It is important to remember that the primary spring is the opposing force to the clutch weights, and that changing the rating of the primary spring can effect the amount of force required from the flyweights.

Lighter weights: Slower up shift during the clutching phase. Slower up shift increases rpm.

Note: Remember, sometimes different curvature and profile can make total GRAMS irrelevant to each other. *You can only compare flyweights by grams if the curve and distribution of mass of two flyweights are the same.* Curvature and distribution of mass are also tuning methods.

Springs - Stiffer springs slow the up shift. Softer springs up shift faster. Sometimes a stronger spring in the primary and/or secondary clutch can allow the use of more weight and the combination is effective for a situation, but not all situations are the same. A spring is another type of tuning component.

It is NOT that quicker or slower up shift is BETTER....it is totally dependent on the situation. The goal is to achieve the best shift pattern for the application at hand, so that the engine stays in its best rpm zone, whether it be a stock or modified engine, or a different terrain tire or situation.

Dalton Pro Quick Adjust Cam Arms - Adjustable flyweights.

Dalton’s patented quick adjust method means that you can add and subtract flyweight mass from the main body of the flyweight without removing the weights from the drive clutch.

There is one rivet hole at the tip of the flyweight that can be used to change the “range” of the flyweight with different optional mass rivets (this rivet must be done with flyweight removed from clutch), as well as the *patented quick adjust threaded passage* that you can adjust from outside the clutch for most common changes and weight adjustments.

The threaded passage can hold up to 3 of the supplied threaded set screws that weigh 1.2 grams each. 3.6 grams can be* added or subtracted by simply turning the clutch so that the desired weight is up at the top, and using the supplied allen key to add or subtract set screws thus changing the total mass of the flyweight.*

If you were to, for example, switch from one size of tires to another, ..you could most often adjust your clutch setting by simply removing the plastic cover shroud, and make weight adjustments, then re-install the plastic cover. No puller or clutch disassembly required.

Set up and adjustment of this kit is based on your own testing...this is the optional kit for race engines and modified machines....testing will be required for optimal performance for your application.

Always be certain that you keep track of the weights you have adjusted...it helps to mark the clutch in number from 1-4 to keep track. Be certain to not cause an imbalance by double adding to one passage and not all of them the same. Keep track of screws remaining
Engine /Clutch Modification- Performance enthusiasts often opt for modification. Most typical “bolt on” mods such as pipes, air box mods, CDI ignition boxes, etc do not require much different clutching than provided in our regular kit. This kit is for race engines and extensive mods. Custom, long duration Cams make peak hp at higher rpm. Special engine shop cams are not like typical bolt in cams that will work with stock piston. Typical bolt-ins... eg. Web or Hotcam do not require nearly as much rpm as the above mentioned. Possibly some big bore kits that use bigger pistons, but still use the stock, or more typical “bolt in” type cams may require more weight in the weights than race cams. You MUST work closely with your engine builder to know peak torque and hp rpm required. Clutch for rpm at the 200 ft mark during testing (before the clutch phase is over) Other mods, like Nitrous Oxide injection, etc will require more total flyweight mass.

The wide range of adjustability makes this a great kit for ease of fine tuning on custom mod vehicles. In applications that are not stock, field testing is to be expected.

![Image of clutch modification](https://example.com/image.png)

Installation and removal of Mass Rivet (tip weight)

1) Push the rivet ALL the way into the appropriate hole in the tip of the flyweight.
2) Using a large shop vise hold the weight in a manner in the vise that holds the rivet all the way through the hole.
3) Squeeze/expand the rivet. Place all 4 rivets pointing the same direction.

For later removal of rivets if desired, use the following procedure:

1) Mark lightly the center of the flush side of the rivet with a center punch.
2) Using a 3/16 drill bit, drill approximately half way into the rivet.
3) Insert a flat ended punch with a straight shaft of 1/8" diameter into the drilled hole and tap the rivet through the hole to remove.
Using the Quick Adjust set screws:

This can be done on the bench for initial set up, and as mentioned earlier in the set up guide, it can be adjusted later while the flyweight is still in the clutch.

1) Carefully install the set screw into the threaded passage.
2) Wind the set screw all the way in until it is snug at bottom of threads. Do not over tighten
3) Add additional screws as required, always bottoming on the one inside.

Important: be sure to keep track of what you are installing and where it is installed. It helps to mark the clutch with a permanent marker from 1-4 to be sure you install the same amount of set screws in each hole.

This kit is an OPTIONAL flyweight tuning kit that is designed for use when adapting the regular Dalton Teryx kit to a high rpm race engine. If you have a stock engine Teryx or one with typical bolt on mods, and feel you need help with set up information, the regular DUV K750 TX clutch kit is more applicable and comes WITH a full flyweight set-up instruction manual for typical situations, tire sizes, and mods. The regular, fully adjustable kit IS our recommendation for those applications. This lighter base weight set is for more advanced tuners with race engines and higher rpm requirements.

THANK YOU FOR CHOOSING DALTON INDUSTRIES!